

Universität Stuttgart

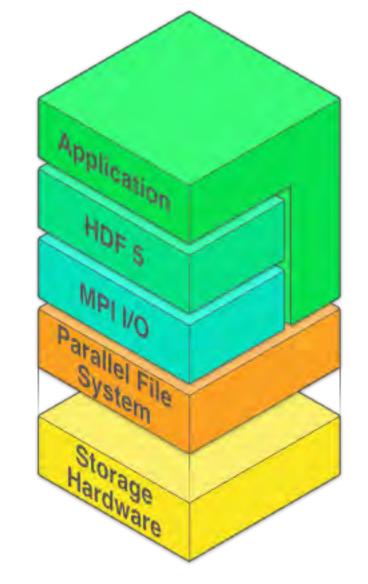
SPONSORED BY THE

Federal Ministry of Education and Research

TOPIO IO FOR EXASCALE

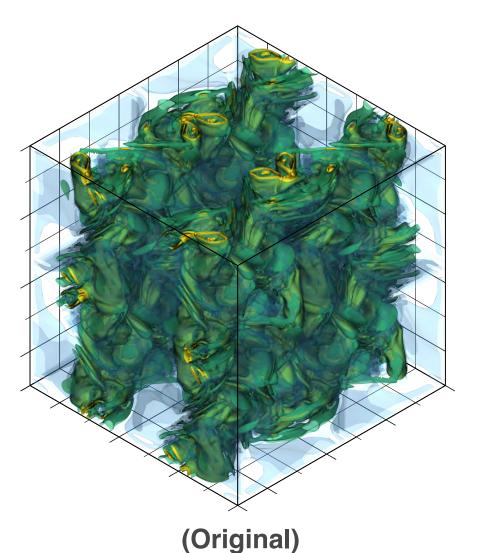
Motivation Forging a New Link

As available **computing power increases**, improvements in weather forecasting lead to a dramatic increase in the amount of data generated in each simulation


- Current resolution of seasonal weather forecasts is not sufficient to represent the interaction between ocean, land surface, and atmosphere with high accuracy
- Push for a global weather modeling using a horizontal resolution of 1.5 km
- High resolution modeling method would result in datasets that could exceed 1 petabyte in size • Improving compute resource utilisation of earth-system simulation applications (e.g. MPAS) requires a revision of their I/O approach • Optimised I/O and sensible data reduction/compression become necessary

I O Twist that dial

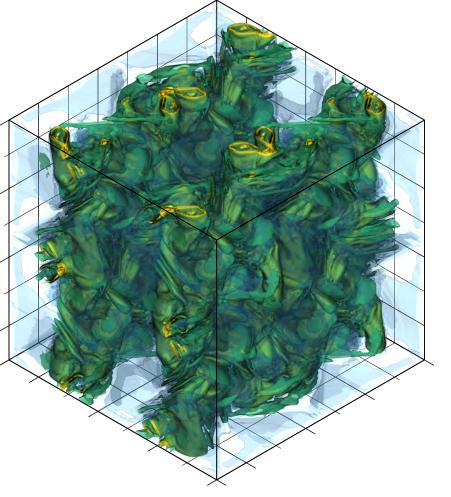
Optimizing the I/O activities of an application and achieving efficient parallel data transmission are demanding tasks


- Complex dependencies between the layers of the I/O stack
- Each layer offers several configuration parameters
- Configuring these parameters depends on various factors (e.g. striping, I/O pattern)
- The users may not be able to optimally tune their applications
- In case default settings are used, this often results in poor I/O efficiency

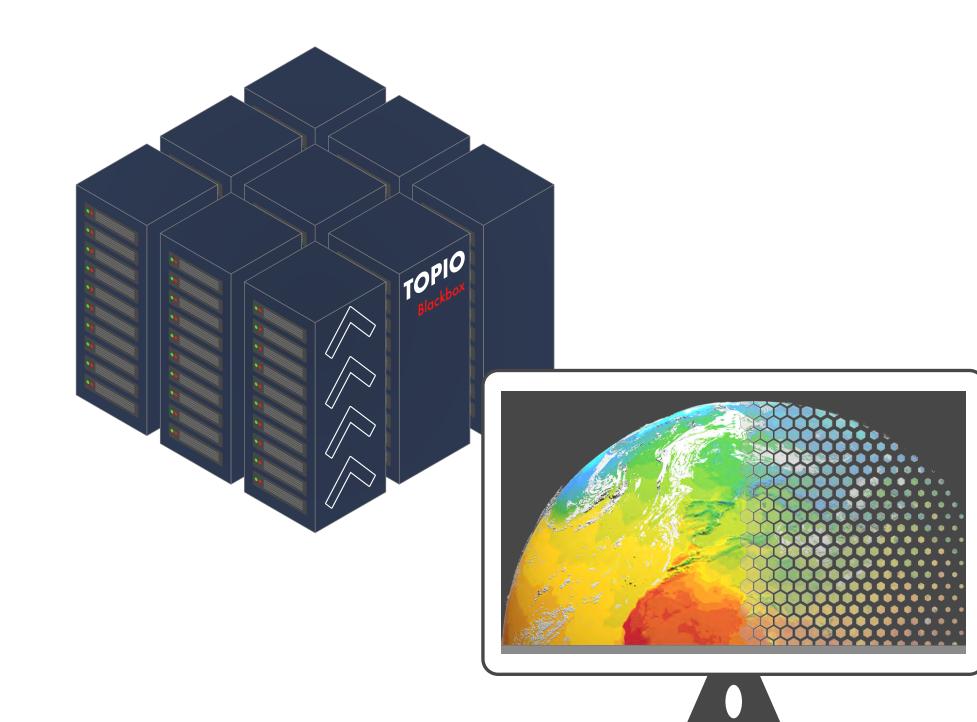
Compression What is it good for

already shown that available have Tests compression implementations can drastically reduce the memory requirements of large simulations

- Lossless encoders (e.g Zstd): modest compression, perfect reconstruction
- Block transform based lossy compression (e.g. ZFP): fast, good compression and fair reconstruction
- Discrete Wavelet Transform based lossy compression (e.g. BigWhoop): reasonably fast, good compression and excellent reconstruction
- Compression can and should be used to effectively reduce the memory footprint of numerical datasets


I/O Project Goals

- Evaluation of the I/O performance on the HLRS Lustre file system
- Optimisation of the I/O performance on the HLRS Lustre file system (with a simple strategy)
- Integration of different optimisation strategies into the auto-tuning tool, analytical/machine learning models
- Optimisation of the I/O performance on the HLRS Lustre file system with the new optimisation methods
- Further developments on the auto-tuning tool and on the compression libraries should then further improve performance; the evaluation is based on the MPAS model application provided
- A combination of the I/O optimisation tool and lossless compression could therefore reduce the amount of data without significantly increasing the total runtime


Compression Project Goals

Compression approach **needs to fit** the MPAS use cases

- Analyse reconstruction requirements global, high-resolution weather for simulations
- Evaluate appropriate tools and approaches for online compression and offline storage
- Optimisation and adaptation of the selfdeveloped compression library for the current use case
- Formalise an API for the compression methodology
- Integrate compression methodology into MPAS

(Compressed - 400 : 1)

Project Target Engage

TOPIO aims to provide the HPC community with a tool that enables both auto-tuning and data compression as a quasi-black-box process

- The auto-tuning and compression tools will be **published** in a repository
- The software modifications applied to MPAS will be made available to their respective developers as well as wider HPC community
- Global high-resolution sub-seasonal simulations with MPAS, which will be computed on the HPC Cluster of HLRS within the framework of the project
- I/O performance of the high-resolution simulation will be **analysed and** evaluated in detail and published in scientific papers

Project Coordinator	Project Volume	Project Partners
High-Performance Computing Center Stuttgart (HLRS) Prof. Dr. Michael M. Resch Nobelstraße 19 D-70569 Stuttgart Tel: +49 711 685-87200 E-Mail: resch@hlrs.de	 0.75 Mio. € BMBF-Funding: 0.75 Mio. € (100 %) with add. 0.15 Mio. € of so-called Project Allowance. Funded under the "New Methods and Technologies for Exascale High Performance Computing (SCALEXA)" funding priority. Project Duration 01.11.2022 until 31.12.2025 	 High Performance Computing Center Stuttgart (HLRS), University of Stuttgart Institute of Physics and Meteorology (IPM), University of Hohenheim Contact Anna Mack, Patrick Vogler - HLRS E-Mail: anna.mack@hlrs.de, patrick.vogler@hlrs.de Arun Kumar Dwivedi - IPM E-Mail: arunkumar.dwivedi@uni-hohenheim.de